Low Temperature Sterilization

Hydrogen Peroxide

Formaldehyd

Low Temperature Solutions

Consumables

Ethyleneoxide

Service

2018-02-02

Robert Tornberger
Background

• Instruments used in MIS are often sensitive to high temperature and pressure. This leads to a growing demand of Low Temperature Sterilizers.

• Customer requests on a higher throughput and production capacity.

• New trend and demands of low temperature sterilization for semi critical instruments that might be categorized as critical, i.e. Duodenoscopes.
Background
Sterilization Methods

• Ethylene oxide

• Formaldehyde

• Hydrogen peroxide

• Hydrogen peroxide/Ozone
Standards

Standards – requirements, testing and acceptance criteria:

• EN 1422:2014 - Ethylene Oxide

• EN 14180:2014 – Formaldehyde

• draftEN XXXXX - Hydrogen peroxide TC 102 wg 6 (2019)
Standards

Standards for development, validation and routine control:

- EN-ISO 11135:2014 - Ethylene Oxide
- EN-ISO 25424:2009 – Formaldehyde
- ISO/NP 22441 - Hydrogen peroxide (ISO/TC 198)
Sterilization Methods – Ethylene oxide

Characteristics

• Very effective sterilant

• Applied in gas/steam

• Good penetration in longer lumens

• Cancer Hazard and Reproductive Hazard

• Explosive

• Wrapping/porous material absorbs the sterilant

• Degassing required outside the chamber
Sterilization Methods – Formaldehyde

Characteristics

• Very effective sterilant

• Applied in gas/steam

• Good penetration in longer lumens

• Dangerous breathing in…

• Dissolves in water

• Wrapping/porous material absorbs the sterilant

• Degassing in-chamber
Sterilization Methods – Hydrogen peroxide

Characteristics

- Very effective sterilant
- Applied as vapor
- Good penetration in lumens
- Reactive/Corrosive
- Dissolves in water
- Transforms into water and oxygen with plasma and catalytic converter
Sterilization Methods – Hydrogen peroxide & Ozone

Characteristics

• Very effective sterilant combination

• Applied as vapor that condensates (micro layer)

• Good penetration in longer lumens

• Reactive/Corrosive

• Dissolves in water

• Hydrogen peroxide decomposes to water and oxygen with Ozone

• Ozone decomposes to water and oxygen with the hydrogen peroxide
Instrument Flow and Production Solution
Low Temperature Sterilizers
Customer Requirements

- **High instrument compatibility:**
 - Material
 - Lumen length

- **Throughput:**
 - Cost effective
 - High/Medium/Low/Peaks
 - Type of instruments

- **Safety:**
 - User, patient & environment
 - Validated cycles

- **High Quality:**
 - Quality assurance
 - Notified bodies

Low temperature sterilization customer requirements
Low Temperature Sterilizers

Supplier Offer

- **Complete solution provider**
- **Wide product portfolio**
- **Complete consumable offering**

High instrument compatibility:
- Material
- Lumen length

Throughput:
- Cost effective
- High/Medium/Low/Peaks
- Type of instruments

Safety:
- User, patient & environment
- Validated cycles

High Quality:
- Quality assurance
- Notified bodies
Consumables - Low Temperature Sterilizers

- Sterilant
- Chemical Indicators
- Biologic Indicators
- Routine Monitoring Kits
- Packaging Materials

Total Consumable Offering
Hydrogen Peroxide & Plasma
Hydrogen Peroxide & Plasma
Low Temperature H2O2 Sterilizers
In-chamber Plasma vs. Out Side Plasma & No Plasma

In-Chamber Plasma

Antenna & RF Plasma
Catalytic Convertor

Vaporizer
Oil Filter
Vacuum Pump

Out Side Plasma & No Plasma

Vaporizer
Sterilization Chamber
Oil Filter
Vacuum Pump

Arc Plasma
Vacuum Conditioning
The Sterilization Process requires a deep vacuum to provide an optimal sterilization environment.

Plasma Conditioning
The Chamber is pre-conditioned with plasma in order to (i) remove moisture and (ii) enable homogenous heat distribution.

1st Hydrogen Peroxide Injection
The previously conditioned \(\text{H}_2\text{O}_2 \) Sterilant is injected into the sterilization chamber as a vapor.

1st Diffusion (High)
Dry air is inserted into the chamber to push the \(\text{H}_2\text{O}_2 \) further into any lumens.

2nd Diffusion (low)
Warmup of chamber to enable conditions for avg 55°C

2nd Diffusion (high)
760Torr = 1 Atm

2nd Hydrogen Peroxide Injection
Once again, conditioned \(\text{H}_2\text{O}_2 \) Sterilant is injected into the sterilization chamber as a vapor.

Vacuum Conditioning
The Chamber evacuated to vacuum in preparation for the Plasma Abatement stage.

Optional Aeration
Sterilization cell is vented with purified dry air to provide further cleansing.

Plasma Abatement
The plasma at the end of the cycle, ensures that all \(\text{H}_2\text{O}_2 \) is decomposed (to water vapor and oxygen) and to contributes to the sterilization via the UV and free radicals generated.

Vacuum Conditioning
The Chamber evacuated to vacuum in preparation for the 2nd Injection Phase.

Sterilization Completion
The system will check all parameters before finalizing the sterilization cycle.

Process

- Fast cycle = 59% \(\text{H}_2\text{O}_2 \) 2 injection
- Standard = 80-82% \(\text{H}_2\text{O}_2 \) 2 injections
- Advanced = 90-92% \(\text{H}_2\text{O}_2 \) 2 injections
Low Temperature H₂O₂ Sterilizers

Lumen Claims

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Description</th>
<th>Inside Diameter</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast Cycle 29 min</td>
<td>Fast sterilization for surface instruments e.g.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
<tr>
<td></td>
<td>• General surface surgery instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rechargeable batteries</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ophthalmic Instruments W/O lumens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard Cycle 42 min [Concentrated H₂O₂]</td>
<td>Sterilization of general surgical instruments with flexible and short rigid lumens e.g.</td>
<td>Flexi</td>
<td>Flexi</td>
</tr>
<tr>
<td></td>
<td>• General surface surgery instruments</td>
<td>1.0 mm</td>
<td>≤ 850 mm</td>
</tr>
<tr>
<td></td>
<td>• Single channel flexible scopes</td>
<td>2.0 mm</td>
<td>≤ 1200 mm</td>
</tr>
<tr>
<td></td>
<td>• Rigid lumens</td>
<td>Rigid</td>
<td>Rigid</td>
</tr>
<tr>
<td></td>
<td>• Maximum 6 lumens per load</td>
<td>1.0 mm</td>
<td>≤ 400 mm</td>
</tr>
<tr>
<td>Advanced Cycle 53 min [Concentrated H₂O₂]</td>
<td>Sterilization of general rigid (not flexible) surgical instruments with long lumens e.g.</td>
<td>1.0 mm</td>
<td>≤ 500 mm</td>
</tr>
<tr>
<td></td>
<td>• General surface surgery metal instruments</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Instruments which have long rigid lumens</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Maximum 6 lumens per load</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Formaldehyde & Steam
Formaldehyde & Steam
Formaldehyde & Steam
Formaldehyde Process (55°-80°)
Low Temperature Steam Formaldehyde

Low temp & high temp

- 134°C Steam
- 121°C Steam
- 80°C Steam/FO
- 65°C
- 55°C

Safety

Typetested acc. to FO sterilizer norms
EN14180 Building and testing
EN25424 Development, validation and routine control

Material compatibility

Long lumen penetration & Non oxidizing
Low Temperature Steam Formaldehyde

Steam + Formaldehyde = Steam & formaldehyde
Low Temperature Sterilizers

Hydrogen Peroxide & Plasma

Hydrogen Peroxide & Ozone

Formaldehyde & Steam
Hydrogen Peroxide & Ozone
Hydrogen Peroxide and Ozone
Process
Low Temperature Sterilizers – TSO3

- First low temperature sterilizer with a “load sensing” Dynamic Sterilant Delivery System.
- First low temperature sterilizer with micro-condensation layer on device surfaces
- First “single cycle” low temperature sterilizer cleared to process a 34 kg load consisting of:
 - General instruments
 - Batteries, drills, cables, cameras
 - Single channel flexible endoscopes
 - Rigid and semi-rigid single and dual channeled devices including endoscopes.

Note: long/multi-channel scopes are dedicated load, 1/cycle
Low Temperature Sterilizers – TSO3

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Description</th>
<th>Inside Diameter</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Cycle</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Cycle 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>General surface surgery metal instruments, batteries, drills, cables, cameras, etc.</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Single channel flexible endoscopes</td>
<td>≥ 1.0 mm</td>
<td>≤ 850 mm</td>
</tr>
<tr>
<td></td>
<td>Single & double channel flexible endoscope</td>
<td>≥ 1.0 mm</td>
<td>≤ 989 mm</td>
</tr>
<tr>
<td></td>
<td>Rigid channel devices including single channel and double rigid channel endoscopes</td>
<td>≥ 0.7 mm, ≥ 2.0 mm</td>
<td>≤ 500 mm, ≤ 575 mm</td>
</tr>
<tr>
<td></td>
<td>Multi-Channel flexible endoscope (Video colonoscope or gastroscope 4 channels total)*</td>
<td>≥ 1.2 mm, ≥ 1.45 mm</td>
<td>≤ 1955 mm, ≤ 3500 mm</td>
</tr>
</tbody>
</table>
Questions & Answers